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Generative models

In a nutshell

• They model the join probability P(X ,Y ).

• They learn the distribution of the data.

• More general than discriminative models (a DM can always be derived from a GM).

• Since they learn a distribution as similar as possible to the real distribution of data, it is
possible to sample artificial data from them.

• They can handle multi-modal output, where more than one Y is the correct prediction for
a single X (e.g. X is a frame in a video, and Y is the predicted next frame).

• Usually unsupervised.
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Generative models
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Image-to-Image translation

• Like a language translation, we want to translate one image from one domain to another,
maintaining unchanged the semantic content.
• The ground truth result of the translation may not be known, and more than one result

might be correct.
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Most used models for image-to-image translation

• If you have ground truth data (paired images) → pix2pix [1]
• If you have unpaired data → cycleGAN [2]

I The problem is similar to the problem of learning to translate between 2 languages without a
dictionary.

I We could exploit the cycle consistency properties of mappings:

F (G (x)) ≈ x and G (F (y)) ≈ y

I We force the model to learn the inverse mapping, and the composition of the 2 translation
have to be similar to the input.
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Defogging

→
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Defogging

• Applicable to many fields (self-driving cars, automotive, surveillance, aesthetic quality of
photos. . . ).
• Intrinsically unpaired:

I Almost impossible to have the same scene with and without fog.
I Adding artificial fog requires exact scene depth (difficult to obtain in an outdoor scenario).
I Using man-made fog is onerous, time consuming and cannot be done in many scenarios (e.g.

roads).

• We are interested in defogging images with thick and severe fog (many works and
datasets concentrate on light haze).
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Defogging thick fog using paired/unpaired data

(a) Real (b) Artificial fog (c) Totally unpaired
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CurL-Defog [3]
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CurL-Defog [3]

(a) Real image (b) Artificial fog (c) Totally unpaired (d) CurL-Defog
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Correction of face morphing artifacts
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Printed & scanned morphed images [4]

• Demorphing is usually performed on high-resolution
digital morphed images.

• But when we request a document we have to
provide a small printed photo ID that is scanned
electronically.

• Printing and scanning images degrade their quality,
and some morphing artifacts may be not visible
after the process.
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Simulation of printed & scanned morphed images

• Training DL models on printed & scanned morphed images require a large dataset.

• Printing and scanning a photograph is time consuming and cannot be completely
automatized.

• We want to exploit image-to-image translation techniques to performing the mapping
automatically, without the need to manually perform the printing and the scanning of the
images.
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Continual learning with replay
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3 Straightforward technique: just store past
data and repeat them through the
network.

7 Requires extra storage (e.g. for ImageNet,
if we store 20 patterns per class, the total
storage is about 3.8 GB)

7 Requires extra forward/backward steps
when mixing new and old patterns more
iterations for epoch.

7 Not really biologically plausible.
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Continual learning with latent replay [5]

3 Efficiency: extra forward and backward
steps take place only in the upper layers.

∼ More biologically plausible.

∼ Less storage required.

7 Features aging.
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Latent generative replay
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3 Efficiency: extra forward and backward

steps take place only in the upper layers.

3 No storage required.

3 No features aging.

3 No constraints on the number of replay
patterns.

3 Even more biologically plausible.
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