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Introduction



Continual Learning

e Human intelligence allows us to learn new tasks all the time, while
remembering (almost) everything we learned thus far.

e On the contrary, if a Neural Network is trained on a stream of data with novel
tasks/classes emerging later on, focusing on the current examples deteriorates its
performance on old data (Catastrophic Forgetting) [14].

e Continual Learning (CL) studies how to train a neural network from a stream of
non i.i.d. samples, relieving catastrophic forgetting.



Problem Formulation

e Let a classification problem be split in T tasks;

e we train a classifier £, with parameters 6, on one task at a time in sequence;

e Vt € {1,..., T}, we train on input samples x and labels y from an i.i.d.
distribution Dy;

e goal: at any given point in training, correctly classify examples from any of the
observed tasks up to the current one t.

te
argmin Z Le, where Ly £ B, )up, [((y, fp(x))]. (1)
o =

e Data from previous tasks are not unavailable: £;_; must be optimized without
D; for t € {1,...,tc —1}.



Standard Settings

The authors of [9, 20] identify three incremental learning (IL) settings:

e Task Incremental Learning (Task-IL): split the training samples into partitions
of classes (tasks), learn them incrementally and guess the correct label given the
task number (e.g.: Split Cifar-10 [23], Split Tiny-ImageNet [6]).

e Class Incremental Learning (Class-IL): same as Task-IL but without task
number at inference time.

e Domain Incremental Learning (Domain-IL): tasks are defined by different
transformations applied to the same input samples. Model must classify correctly,
regardless of transformation (e.g.: Permuted MNIST [10] and Rotated
MNIST [13]).

Difficulty: Task-IL < Domain-IL < Class-IL. [7, 1]
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Specific kernels are related to specific task.
We enforce this concept by masking the ac-
tivations of each layer — for each task — with
a gating mechanism (right).

To preserve previous knowledge, we measure
the relevance of each unit at the end of the
task, freezing those that are over a certain
threshold and re-initializing the others.
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We forward each example through all the gating modules, resulting in as many feature

vectors as the number of seen tasks. The latter serve as input for the task classifier.
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Baseline

Recalling the CL objective:

te
argmin Z Le, where Ly £ B, )p, [((y, fp(x))] (2)
o =

Let B be the memory buffer, ER approximates it as:

£ =By [0 0] + By (£ ()] (3)

To populate B, we use the reservoir sampling algorithm [21] (as done by Riemer et
al. [17]). It works online and gives all input data the same probability of being sampled.



ER: pros and cons

Due to its simplicity, ER is an ideal starting point to develop a strong Class-IL method.
However, it is affected by some issues:

1. ER repeatedly optimizes a relatively small buffer: possible overfitting problem;

2. Incrementally learning a sequence of classes implicitly biases the network towards
newer tasks [22];

3. Usually, the memory buffer is populated through random sampling, to obtain an
i.i.d. distribution [17, 5]. This is not always ideal (e.g.: if the buffer is small,
entire classes could be left out).

We mitigate these issues by applying some tricks.



Tricks

® Independent Buffer Augmentation (IBA):
when data augmentation is used on the input
stream, we store not augmented input items
in B and augment them independently when
drawn for replay.

Reduces overfitting.
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Tricks

@ Loss-Aware Reservoir Sampling (LARS):

We further alter reservoir to retain the most meaningful examples: replace each item in
the buffer with a probability that depends on its corresponding training loss. Training
loss values are kept in the buffer and updated when the item is drawn for replay.

LARS prob.

This could be compared to GSS [1]. However, our loss score is promptly available at
forward passes, whereas GSS uses cosine similarity between pairs of gradients, which
need to be computed from scratch (slow).



Tricks

@ Balanced Reservoir Sampling (BRS):
Given an input stream with C distinct classes, the probability of the reservoir leaving
at least one of them out of B is critical when the buffer is small:

1 Bl = 1
p— (1 - _) TIBRC 2« 36.7% (4)
C C—ooco €

Therefore, we propose a simple modification to reservoir, requiring that inserted

samples replace a random item from the most represented class.

Reservoir BRS
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Tricks

@ Complete Bias Correction (CBiC):

Inspired to the Bias Correction layer (BiC) in [22], we introduce an additional layer on
top of the network with parameters 3,Vt € 1,..., T. This layer equalizes the k"
output logit ox with a task-specific offset:

g = o, + B¢ where t is the task containing class k (5)

Balances bias among different classes.
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Tricks

® Exponential Learning Rate Decay (EIrD):

“The best way to preserve previous knowledge is not to learn anything new”.
Inspired EWC [10] and other regularization methods, we progressively slow down
learning in later tasks. We set the learning rate for the j™ seen example to:

Irj = Irg - ’yNex, (6)

where Iry is the initial learning rate, Ny is the number of input examples seen so far
and v is a hyper-parameter chosen s.t. Ir; = Ir - 1/6.
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Results

The incremental application of the proposed tricks enhance the final performance.
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Results

Here we show a direct comparison with other SOTA Rehearsal Methods.

Methods Split F-MNIST Split CIFAR-10 Split CIFAR-100
SGD 20.11 19.62 8.54

Joint Training 84.47 92.13 70.66
Memory Buffer  Bago Bsoo  Biooo  Booo Bsoo  Bioo  Booo Bsoo  Biooo
A-GEM [4] 49.73 49.47 5098 1990 20.35 19.81 9.17 9.23 9.12
GEM [13] 69.46 7591 79.62 28.14 3469 36.68 9.18 1412 17.88
HAL [3] 7259 7759 80.79 2592 2799 29.10 8.60 9.21 11.11
iCaRL [16] 75.46 7754 78.13 41.26 41.34 4203 20.73 24.74 2552
ER [15] 7254 79.02 81.39 24.06 27.06 31.38 9.66 1150 12.36
ER+T (ours) 76.07 80.11 82.46 59.18 62.60 70.99 21.26 24.90 36.05

14



Applicability to Regularization Methods
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Since [C]BiC and ELrD are not specific to oo

Rehearsal Methods, we further apply them CEWC OBIC  SeBic Tivming

to two regularization methods: online EWC

(oEWC) [19] and SI [23]. S-F-MNIST SI [23] oEWC [19]
No trick 19.91 20.04
BiC 24.67 25.71
CBiC 33.15 40.36

CBiC+EID 35.51 43.85
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Motivation

The SOTA is virtually on par with ER:
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want to introduce a new, equally simple, baseline for CL.
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Method

Let 0F is the optimal set of parameters at the end of task t,
we encourage the network to mimic its original responses:

te—1

L +a Z Ex~p, [ Dre(for (x) || fa(x))], (7)

t=1

Dy is not available for previous tasks: we rewrite Eq. 7 by stor-
ing past network responses in the memory buffer with reservoir
sampling and replaying them.

Lo+ a Epys|llz = ho()3]. (8)

We replace the KL div. with the MSE of the logits (a particular
case of distillation, which avoids the squashing function).

store
responses

Cross- MSE
Entropy
Loss

Memory
Buffer

store
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Input
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Method

We call this strategy Dark Experience Replay (DER), since
we rely on Dark Knowledge [8] for distilling past experiences: Input Output

are logits just proxies for the ground-truth labels or something ~ stream logits

more?

Eq. 8 implies picking logits z throughout the optimization E
trajectory: potentially different from the ones at the task's
local optimum (as done instead by FDR [2]). Surprisingly, O]
this strategy does not hurt performance and produces positive
effects...
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Analysis
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Results

DER and DER++ almost always outperform the SOTA across all settings (especially
when memory efficiency is taken into account).

Dataset | S|JOINT SGD oEWC [19] SI [23] LwF [12] PNN [18]] bs |ER [17] GEM [13] A-GEM [4] iCaRL [16] FDR [2] GSS [1] HAL [3] DER DER++

S-CIF10 [C| 9220 19.62  19.49 19.48 19.61 - (s00) | 57.74  33.83 21.05 47.55 28.71 49.73 4179 7051 72.70
(5120)| 82.47 20.88 23.06 55.07 19.70 67.27 59.12 83.81 85.24

T|98.31 61.02 68.29 68.05 63.29 95.13 | (s00) | 93.61  89.07 88.15 88.22 93.29 91.02 8454 93.40 93.88

(5120)| 96.98  94.34 89.67 92.23 9432 9419 8851 9543 96.12

S-T-IMG | C| 59.99 7.92 7.58 6.58 8.46 - (500) | 9.99 - 7.75 9.38 10.54 - - 17.75 19.38
(5120)| 27.40 - 8.04 14.08 28.97 - - 36.73 39.02

T|82.04 1831 19.20 36.32 15.85 67.84 | (s00) | 48.64 - 24.31 31.55 49.88 - - 51.78 51.91

(5120)| 67.29 - 26.10 40.83 68.01 - - 69.50 69.84

P-MNIST|D| 94.33 40.70  75.79 65.86 - - (s00) | 80.60  76.88 67.56 - 83.18 76.00 80.13 87.29 88.21
(5120)| 89.90  87.42 73.32 - 90.87 8222 89.20 91.66 92.26

R-MNIST|D| 95.76 67.66  77.35 71.91 - - (s00) | 88.91  81.15 80.31 - 89.67 81.58 85.00 9224 92.77
(5120)| 93.45  88.57 80.18 - 94.19 85.24 91.17 94.14 94.65
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General Continual Learning




Requirements and Compatibility

De Lange et al. highlight that many of the recently proposed CL methods fail to meet
the requirements of real-world applications [6]. Accordingly, they define the General
Continual Learning setting (GCL) by proposing a series of desiderata for CL methods
to be applicable in practice. Most importantly:

e no task boundaries: do not rely on boundaries between tasks during training, as
they may not exist in practice;

e no test time oracle: do not require task identifiers at inference time;

e constant memory: have a bounded memory footprint throughout the entire

training phase.

DER satisfies these requirements by design.
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MNIST-360

We design the first GCL evaluation setting: MNIST-360:

e the stream of examples is not i.i.d. and not divided
into tasks;

e the learner must classify two MNIST [11] digits at all
times;

e sharp distribution shifts: MNIST classes can change;
e smooth distribution shift: digits are affected by an

increasing rotation;

e digits are never shown twice; classes are never shown B

at the same angle.
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Results

DER and DER++ are the most accurate among the (few) methods that are
compatible with the GCL setting.

Bronze medal to ER!

JOINT  SGD | Buffer | ER [17] MER[17] A-GEM-R[4] GSS [1] DER (ours) DER++ (ours)

200 49.27 48.58 28.34 43.92 55.22 54.16
82.98 19.09 | 500 65.04 62.21 28.13 54.45 69.11 69.62
1000 75.18 70.91 29.21 63.84 75.97 76.03
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Looking Ahead




Semi-Supervised Continual Learning

What happens if we have less and less labeled exemplars on the input stream?

e Evaluate how current SOTA performs in such a scenario;

e Propose new methods based on representation learning and semi-supervised
learning techniques.

Siljcajcajealedcasap
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Do rehearsal methods really learn from the stream?

go4{/™m ER |
I ER buffer

The Continual Learning problem is only meaningful

if we can improve over the simplest baseline of all:
storing examples as they come and retrain from
scratch.

Avg. Accuracy [%]

Surprisingly, there is a very thin separation between
ER/DER and a retraining baseline... I B B

Is CL really the best option?
200 500 5120
Buffer size
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