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Introduction



Continual Learning

• Human intelligence allows us to learn new tasks all the time, while

remembering (almost) everything we learned thus far.

• On the contrary, if a Neural Network is trained on a stream of data with novel

tasks/classes emerging later on, focusing on the current examples deteriorates its

performance on old data (Catastrophic Forgetting) [14].

• Continual Learning (CL) studies how to train a neural network from a stream of

non i.i.d. samples, relieving catastrophic forgetting.
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Problem Formulation

• Let a classification problem be split in T tasks;

• we train a classifier f , with parameters θ, on one task at a time in sequence;

• ∀t ∈ {1, ...,T}, we train on input samples x and labels y from an i.i.d.

distribution Dt ;

• goal: at any given point in training, correctly classify examples from any of the

observed tasks up to the current one tc

argmin
θ

tc∑
t=1

Lt , where Lt , E(x ,y)∼Dt

[
`(y , fθ(x))

]
. (1)

• Data from previous tasks are not unavailable: L1...tc must be optimized without

Dt for t ∈ {1, . . . , tc − 1}.

2



Standard Settings

The authors of [9, 20] identify three incremental learning (IL) settings:

• Task Incremental Learning (Task-IL): split the training samples into partitions

of classes (tasks), learn them incrementally and guess the correct label given the

task number (e.g.: Split Cifar-10 [23], Split Tiny-ImageNet [6]).

• Class Incremental Learning (Class-IL): same as Task-IL but without task

number at inference time.

• Domain Incremental Learning (Domain-IL): tasks are defined by different

transformations applied to the same input samples. Model must classify correctly,

regardless of transformation (e.g.: Permuted MNIST [10] and Rotated

MNIST [13]).

Difficulty: Task-IL < Domain-IL < Class-IL. [7, 1]
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Conditional Computation for Continual Learning - CVPR 2020 (Oral)

D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, B.E. Bejnordi.

Specific kernels are related to specific task.

We enforce this concept by masking the ac-

tivations of each layer – for each task – with

a gating mechanism (right).

To preserve previous knowledge, we measure

the relevance of each unit at the end of the

task, freezing those that are over a certain

threshold and re-initializing the others.

A task-incremental setting requires to optimize:

max
θ

Et∼T
[
E(x,y)∼Tt

[log pθ(y|x, t)]
]
, (1)

where θ identifies the parametrization of the learner net-
work, and x, y and t are random variables associated with
the observation, the label and the task of each example, re-
spectively. Such a maximization problem is subject to the
continual learning constraints: as the model observes tasks
sequentially, the outer expectation in Eq. 1 is troublesome
to compute or approximate. Notably, this setting requires
the assumption that the identity of the task each example
belongs to is known at both training and test stages. Such
information can be exploited in practice to isolate relevant
output units of the classifier, preventing the competition be-
tween classes belonging to different tasks through the same
softmax layer (multi-head).
Class-incremental models solve the following optimization:

max
θ

Et∼T
[
E(x,y)∼Tt

[log pθ(y|x)]
]
. (2)

Here, the absence of task conditioning prevents any form of
task-aware reasoning in the model. This setting requires to
merge the output units into a single classifier (single-head)
in which classes from different tasks compete with each
other, often resulting in more severe forgetting [37].
Although the model could learn based on task information,
this information is not available during inference.

To deal with observations from unknown tasks, while re-
taining advantages of multi-head settings, we will jointly
optimize for class as well as task prediction, as follows:

max
θ

Et∼T
[
E(x,y)∼Tt

[log pθ(y, t|x)]
]
=

Et∼T
[
E(x,y)∼Tt

[log pθ(y|x, t) + log pθ(t|x)]
]
.

(3)

Eq. 3 describes a twofold objective. On the one hand, the
term log p(y|x, t) is responsible for the class classification
given the task, and resembles the multi-head objective in
Eq. 1. On the other hand, the term log p(t|x) aims at pre-
dicting the task from the observation. This prediction re-
lies on a task classifier, which is trained incrementally in a
single-head fashion. Notably, the objective in Eq. 3 shifts
the single-head complexities from a class prediction to a
task prediction level, with the following benefits:

• given the task label, there is no drop in class prediction
accuracy;
• classes from different tasks never compete with each

other, neither during training nor during test;
• the challenging single-head prediction step is shifted

from class to task level; as tasks and classes form a
two-level hierarchy, the prediction of the former is ar-
guably easier (as it acts at a coarser semantic level).
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Figure 1: The proposed gating scheme for a convolution
layer. Depending on the input feature map, the gating mod-
ule Glt decides which kernels should be used.

3.2. Multi-head learning of class labels

In this section, we introduce the conditional computation
model we used in our work. Fig. 1 illustrates the gating
mechanism used in our framework. We limit the discus-
sion of the gating mechanism to the case of convolutional
layers, as it also applies to other parametrized mappings
such as fully connected layers or residual blocks. Consider
hl ∈ Rclin,h,w and hl+1 ∈ Rclout,h

′,w′
to be the input and

output feature maps of the l-th convolutional layer respec-
tively. Instead of hl+1, we will forward to the following
layer a sparse feature map ĥl+1, obtained by pruning unin-
formative channels. During the training of task t, the deci-
sion regarding which channels have to be activated is dele-
gated to a gating moduleGlt, that is conditioned on the input
feature map hl:

ĥl+1 = Glt(h
l)� hl+1, (4)

where Glt(h
l) = [gl1, . . . , g

l
clout

], gli ∈ {0, 1}, and � refers
to channel-wise multiplication. To be compliant with the in-
cremental setting, we instantiate a new gating module each
time the model observes examples from a new task. How-
ever, each module is designed as a light-weight network
with negligible computation costs and number of parame-
ters. Specifically, each gating module comprises a Multi-
Layer Perceptron (MLP) with a single hidden layer featur-
ing 16 units, followed by a batch normalization layer [12]
and a ReLU activation. A final linear map provides log-
probabilities for each output channel of the convolution.
Back-propagating gradients through the gates is challeng-
ing, as non-differentiable thresholds are employed to take
binary on/off decisions. Therefore, we rely on the Gumbel-
Softmax sampling [13, 20], and get a biased estimate of the
gradient utilizing the straight-through estimator [4]. Specif-

We forward each example through all the gating modules, resulting in as many feature

vectors as the number of seen tasks. The latter serve as input for the task classifier.
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Rethinking Experience Replay

Under review at ICPR 2020.
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Baseline

Recalling the CL objective:

argmin
θ

tc∑
t=1

Lt , where Lt , E(x ,y)∼Dt

[
`(y , fθ(x))

]
. (2)

Let B be the memory buffer, ER approximates it as:

L′ = E(x ,y)∼Dtc

[
`(y , fθ(x))

]
+ E(x ,y)∼B

[
`(y , fθ(x))

]
. (3)

To populate B, we use the reservoir sampling algorithm [21] (as done by Riemer et

al. [17]). It works online and gives all input data the same probability of being sampled.
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ER: pros and cons

Due to its simplicity, ER is an ideal starting point to develop a strong Class-IL method.

However, it is affected by some issues:

1. ER repeatedly optimizes a relatively small buffer: possible overfitting problem;

2. Incrementally learning a sequence of classes implicitly biases the network towards

newer tasks [22];

3. Usually, the memory buffer is populated through random sampling, to obtain an

i.i.d. distribution [17, 5]. This is not always ideal (e.g.: if the buffer is small,

entire classes could be left out).

We mitigate these issues by applying some tricks.
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Tricks

À Independent Buffer Augmentation (IBA):

when data augmentation is used on the input

stream, we store not augmented input items

in B and augment them independently when

drawn for replay.

Reduces overfitting.
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Tricks

Á Loss-Aware Reservoir Sampling (LARS):

We further alter reservoir to retain the most meaningful examples: replace each item in

the buffer with a probability that depends on its corresponding training loss. Training

loss values are kept in the buffer and updated when the item is drawn for replay.
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This could be compared to GSS [1]. However, our loss score is promptly available at

forward passes, whereas GSS uses cosine similarity between pairs of gradients, which

need to be computed from scratch (slow).
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Tricks

Â Balanced Reservoir Sampling (BRS):

Given an input stream with C distinct classes, the probability of the reservoir leaving

at least one of them out of B is critical when the buffer is small:

P =

(
1− 1

C

)|B|
if |B|≈C−−−−−→
C→∞

1

e
≈ 36.7% (4)

Therefore, we propose a simple modification to reservoir, requiring that inserted

samples replace a random item from the most represented class.
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Tricks

Ã Complete Bias Correction (CBiC):

Inspired to the Bias Correction layer (BiC) in [22], we introduce an additional layer on

top of the network with parameters βt∀t ∈ 1, . . . ,T . This layer equalizes the kth

output logit ok with a task-specific offset:

qk = ok + βt where t is the task containing class k (5)

Balances bias among different classes.
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Tricks

Ä Exponential Learning Rate Decay (ElrD):

“The best way to preserve previous knowledge is not to learn anything new”.

Inspired EWC [10] and other regularization methods, we progressively slow down

learning in later tasks. We set the learning rate for the j th seen example to:

lrj = lr0 · γNex , (6)

where lr0 is the initial learning rate, Nex is the number of input examples seen so far

and γ is a hyper-parameter chosen s.t. lrj ≈ lr0 · 1/6.
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Results

The incremental application of the proposed tricks enhance the final performance.
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Results

Here we show a direct comparison with other SOTA Rehearsal Methods.

Methods Split F-MNIST Split CIFAR-10 Split CIFAR-100

SGD 20.11 19.62 8.54

Joint Training 84.47 92.13 70.66

Memory Buffer B200 B500 B1000 B200 B500 B1000 B200 B500 B1000

A-GEM [4] 49.73 49.47 50.98 19.90 20.35 19.81 9.17 9.23 9.12

GEM [13] 69.46 75.91 79.62 28.14 34.69 36.68 9.18 14.12 17.88

HAL [3] 72.59 77.59 80.79 25.92 27.99 29.10 8.60 9.21 11.11

iCaRL [16] 75.46 77.54 78.13 41.26 41.34 42.03 20.73 24.74 25.52

ER [15] 72.54 79.02 81.39 24.06 27.06 31.38 9.66 11.50 12.36

ER+T (ours) 76.07 80.11 82.46 59.18 62.60 70.99 21.26 24.90 36.05
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Applicability to Regularization Methods

Since [C]BiC and ELrD are not specific to

Rehearsal Methods, we further apply them

to two regularization methods: online EWC

(oEWC) [19] and SI [23].
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CBiC+ElrD 35.51 43.85
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Dark Experience Replay

Under review at NeurIPS 2020.
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Motivation

The SOTA is virtually on par with ER:
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We want to introduce a new, equally simple, baseline for CL.
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Method

Let θ∗t is the optimal set of parameters at the end of task t,

we encourage the network to mimic its original responses:

Ltc + α

tc−1∑
t=1

Ex∼Dt

[
DKL(fθ∗t (x) || fθ(x))

]
, (7)

Dt is not available for previous tasks: we rewrite Eq. 7 by stor-

ing past network responses in the memory buffer with reservoir

sampling and replaying them.

Ltc + α E(x ,z)∼B
[
‖z − hθ(x)‖2

2

]
. (8)

We replace the KL div. with the MSE of the logits (a particular

case of distillation, which avoids the squashing function).
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Method

We call this strategy Dark Experience Replay (DER), since

we rely on Dark Knowledge [8] for distilling past experiences:

are logits just proxies for the ground-truth labels or something

more?

Eq. 8 implies picking logits z throughout the optimization

trajectory: potentially different from the ones at the task’s

local optimum (as done instead by FDR [2]). Surprisingly,

this strategy does not hurt performance and produces positive

effects...
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Analysis
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Results

DER and DER++ almost always outperform the SOTA across all settings (especially

when memory efficiency is taken into account).

Dataset S JOINT SGD oEWC [19] SI [23] LwF [12] PNN [18] bs ER [17] GEM [13] A-GEM [4] iCaRL [16] FDR [2] GSS [1] HAL [3] DER DER++

S-CIF10 C 92.20 19.62 19.49 19.48 19.61 - (500) 57.74 33.83 21.05 47.55 28.71 49.73 41.79 70.51 72.70

(5120) 82.47 20.88 23.06 55.07 19.70 67.27 59.12 83.81 85.24

T 98.31 61.02 68.29 68.05 63.29 95.13 (500) 93.61 89.07 88.15 88.22 93.29 91.02 84.54 93.40 93.88

(5120) 96.98 94.34 89.67 92.23 94.32 94.19 88.51 95.43 96.12

S-T-IMG C 59.99 7.92 7.58 6.58 8.46 - (500) 9.99 - 7.75 9.38 10.54 - - 17.75 19.38

(5120) 27.40 - 8.04 14.08 28.97 - - 36.73 39.02

T 82.04 18.31 19.20 36.32 15.85 67.84 (500) 48.64 - 24.31 31.55 49.88 - - 51.78 51.91

(5120) 67.29 - 26.10 40.83 68.01 - - 69.50 69.84

P-MNIST D 94.33 40.70 75.79 65.86 - - (500) 80.60 76.88 67.56 - 83.18 76.00 80.13 87.29 88.21

(5120) 89.90 87.42 73.32 - 90.87 82.22 89.20 91.66 92.26

R-MNIST D 95.76 67.66 77.35 71.91 - - (500) 88.91 81.15 80.31 - 89.67 81.58 85.00 92.24 92.77

(5120) 93.45 88.57 80.18 - 94.19 85.24 91.17 94.14 94.65
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General Continual Learning



Requirements and Compatibility

De Lange et al. highlight that many of the recently proposed CL methods fail to meet

the requirements of real-world applications [6]. Accordingly, they define the General

Continual Learning setting (GCL) by proposing a series of desiderata for CL methods

to be applicable in practice. Most importantly:

• no task boundaries: do not rely on boundaries between tasks during training, as

they may not exist in practice;

• no test time oracle: do not require task identifiers at inference time;

• constant memory: have a bounded memory footprint throughout the entire

training phase.

DER satisfies these requirements by design.
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MNIST-360

We design the first GCL evaluation setting: MNIST-360:

• the stream of examples is not i.i.d. and not divided

into tasks;

• the learner must classify two MNIST [11] digits at all

times;

• sharp distribution shifts: MNIST classes can change;

• smooth distribution shift: digits are affected by an

increasing rotation;

• digits are never shown twice; classes are never shown

at the same angle.
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Results

DER and DER++ are the most accurate among the (few) methods that are

compatible with the GCL setting.

Bronze medal to ER!

JOINT SGD Buffer ER [17] MER [17] A-GEM-R [4] GSS [1] DER (ours) DER++ (ours)

200 49.27 48.58 28.34 43.92 55.22 54.16

82.98 19.09 500 65.04 62.21 28.13 54.45 69.11 69.62

1000 75.18 70.91 29.21 63.84 75.97 76.03
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Looking Ahead



Semi-Supervised Continual Learning

What happens if we have less and less labeled exemplars on the input stream?

• Evaluate how current SOTA performs in such a scenario;

• Propose new methods based on representation learning and semi-supervised

learning techniques.
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Do rehearsal methods really learn from the stream?

The Continual Learning problem is only meaningful

if we can improve over the simplest baseline of all:

storing examples as they come and retrain from

scratch.

Surprisingly, there is a very thin separation between

ER/DER and a retraining baseline...

Is CL really the best option?
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